浅析IGBT:IGBT的结构与工作原理

IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管

是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

在IGBT得到大力发展之前,功率场效应管MOSFET被用于需要快速开关的中低压场合,晶闸管、GTO被用于中高压领域。MOSFET虽然有开关速度快、输入阻抗高、热稳定性好、驱动电路简单的优点;但是,在200V或更高电压的场合,MOSFET的导通电阻随着击穿电压的增加会迅速增加,使得其功耗大幅增加,存在着不能得到高耐压、大容量元件等缺陷。双极晶体管具有优异的低正向导通压降特性,虽然可以得到高耐压、大容量的元件,但是它要求的驱动电流大,控制电路非常复杂,而且交换速度不够快。

IGBT正是作为顺应这种要求而开发的,它是由MOSFET(输入级)和PNP晶体管(输出级)复合而成的一种器件,既有MOSFET器件驱动功率小和开关速度快的特点(控制和响应),又有双极型器件饱和压降低而容量大的特点(功率级较为耐用),频率特性介于MOSFET与功率晶体管之间,可正常工作于几十KHz频率范围内。基于这些优异的特性,IGBT一直广泛使用在超过300V电压的应用中,模块化的IGBT可以满足更高的电流传导要求,其应用领域不断提高,今后将有更大的发展。

如图1所示为一个N沟道增强型绝缘栅双极晶体管结构, N+区称为源区,附于其上的电极称为源极(即发射极E)。N基极称为漏区。器件的控制区为栅区,附于其上的电极称为栅极(即门极G)。沟道在紧靠栅区边界形成。在C、E两极之间的P型区(包括P+和P-区,沟道在该区域形成),称为亚沟道区(Subchannel region)。而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极(即集电极C)。

图片

图1 N沟道增强型绝缘栅双极晶体管结构

IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原来为NPN)晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N-沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的电阻,使IGBT在高电压时,也具有低的通态电压。

IGBT是由MOSFET和GTR技术结合而成的复合型开关器件,是通过在功率MOSFET的漏极上追加p+层而构成的,性能上也是结合了MOSFET和双极型功率晶体管的优点。N+区称为源区,附于其上的电极称为源极(即发射极E);P+区称为漏区,器件的控制区为栅区,附于其上的电极称为栅极(即门极G)。沟道在紧靠栅区边界形成。在C、E两极之间的P型区(包括P+和P-区)(沟道在该区域形成)称为亚沟道区(Subchannel region)。而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态压降。附于漏注入区上的电极称为漏极(即集电极C)。

图片

图2 IGBT的结构

IGBT是由一个N沟道的MOSFET和一个PNP型GTR组成,它实际是以GTR为主导元件,以MOSFET为驱动元件的复合管。IGBT除了内含PNP晶体管结构,还有NPN晶体管结构,该NPN晶体管通过将其基极与发射极短接至MOSFET的源极金属端使之关断。IGBT的4层PNPN结构,内含的PNP与NPN晶体管形成了一个可控硅的结构,有可能会造成IGBT的擎柱效应。IGBT与MOSFET不同,内部没有寄生的反向二极管,因此在实际使用中(感性负载)需要搭配适当的快恢复二极管。

IGBT的理想等效电路及实际等效电路如下图所示:

图片

图3 IGBT的理想等效电路及实际等效电路

由等效电路可将IGBT作为对PNP双极晶体管和功率MOSFET进行达林顿连接后形成的单片型Bi-MOS晶体管。

因此,在门极-发射极之间外加正电压使功率MOSFET导通时,PNP晶体管的基极-集电极就连接上了低电阻,从而使PNP晶体管处于导通状态,由于通过在漏极上追加p+层,在导通状态下,从p+层向n基极注入空穴,从而引发传导性能的转变。因此,它与功率MOSFET相比,可以得到极低的通态电阻。

此后,使门极-发射极之间的电压为0V时,首先功率MOSFET处于断路状态,PNP晶体管的基极电流被切断,从而处于断路状态。

如上所述,IGBT和功率MOSFET一样,通过电压信号可以控制开通和关断动作

IGBT 的静态特性主要有伏安特性、转移特性开关特性

IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似,也可分为饱和区1 、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2 结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此,限制了IGBT 的某些应用范围。

IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。

IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示:

Uds(on) = Uj1 + Udr + IdRoh

式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。

通态电流Ids 可用下式表示:

Ids=(1+Bpnp)Imos

式中Imos ——流过MOSFET 的电流。

由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。

IGBT在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间,tri为电流上升时间。实际应用中常给出的漏极电流开通时间ton即为td (on) tri之和。漏源电压的下降时间由tfe1和tfe2组成。

IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。

IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。

IGBT是将强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET 器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。

N沟型的IGBT工作是通过栅极-发射极间加阀值电压VTH以上的(正)电压,在栅极电极正下方的p层上形成反型层(沟道),开始从发射极电极下的n-层注入电子。该电子为p+n-p晶体管的少数载流子,从集电极衬底p+层开始流入空穴,进行电导率调制(双极工作),所以可以降低集电极-发射极间饱和电压。工作时的等效电路如图1(b)所示,IGBT的符号如图1(c)所示。在发射极电极侧形成n+pn-寄生晶体管。若n+pn-寄生晶体管工作,又变成p+n- pn+晶闸管。电流继续流动,直到输出侧停止供给电流。通过输出信号已不能进行控制。一般将这种状态称为闭锁状态。

为了抑制n+pn-寄生晶体管的工作IGBT采用尽量缩小p+n-p晶体管的电流放大系数α作为解决闭锁的措施。具体地来说,p+n-p的电流放大系数α设计为0.5以下。 IGBT的闭锁电流IL为额定电流(直流)的3倍以上。IGBT的驱动原理与电力MOSFET基本相同,通断由栅射极电压uGE决定。

IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+ 区之间创建了一个J1结。当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。

电导调制效应使电阻RN减小,使通态压降小。

当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的,尾流特性与VCE、IC和 TC有关。

栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。

当集电极被施加一个反向电压时,J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。

当栅极和发射极短接并在集电极端子施加一个正电压时,P/NJ3结受反向电压控制。此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。

IGBT在集电极与发射极之间有一个寄生PNPN晶闸管。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。通常情况下,静态和动态闩锁有如下主要区别:

只在关断时才会出现动态闩锁。这一特殊现象严重地限制了安全操作区。

为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:一是防止NPN部分接通,分别改变布局和掺杂级别;二是降低NPN和PNP晶体管的总电流增益。

此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。-----------------------------------------------------------------------------------------------

IGBT模块内部是什么样的?拆一个看看

IGBT作为国家战略性新兴产业,在轨道交通、智能电网、工业节能、电动汽车与新能源装备等领域应用极为广泛,被誉为半导体皇冠上的明珠。作为一名电力电子打工人,大家或多或少都应该和IGBT打过交道。面对耳熟能详的IGBT,内部结构是什么样的?估计大部分小伙伴就不太清楚了。为了满足大家的好奇心,今天我们就以英飞凌 PrimePACK 3封装的IGBT模块为例,帮大家拆解一下,看看这项高科技的内部隐藏着哪些秘密!
图片
模块内部包含两个IGBT,也就是我们常说的半桥模块,每个IGBT的额定电压和电流都是1.7kV 1.4kA。8、9、10、11、12为功率端子,需要连接功率回路。1、2、3、4、5为IGBT的辅助控制端子,需要连接门极驱动回路。6和7为NTC热敏电阻,用来做温度检测或过温保护。
图片
图2. FF1400R17IP4 模块图片及电气原理
像这种类似板砖的黑模块除了“防身”还能做什么呢?举个身边的例子:新能源电动汽车,大家应该都比较熟悉了,采用3个这样的黑模块就可以做一个三相电机驱动器,如果再配上电池,驱动一个电动大巴完全是绰绰有余的。当然了,该模块在其它应用场合也很多,就不一一介绍了。
图片

图片
扯远了,回到主题,图5为IGBT模块的剖面图,如果去掉黑色外壳以及对外的连接端子,IGBT模块内部主要包含3个部件,散热基板DBC基板芯片(包含IGBT芯片和Diode芯片),其余的主要是焊料层和互连导线用途是将IGBT芯片、Diode芯片、功率端子、控制端子以及DBC连接起来,下面我们对每个部分作简单介绍:
图片

IGBT模块最下面的就是散热基板,主要目的是把IGBT开关过程产生的热量快速传递出去。由于铜的导热效果比较好,因此基板通常是用铜制成的,基板的厚度在3-8mm。当然也有其它材料的基板,例如:碳化硅铝(AlSiC),两者各有优劣。
DBC (Direct Bond Copper),全称为直接覆铜基板,也有文献缩写为:DCB(Direct Copper Bond),两者是一个意思。DBC是一种陶瓷表面金属化技术一共包含3层,中间为陶瓷绝缘层,上下为覆铜层,如图6a所示。简单来讲就是在一个绝缘材料的两面覆上一层铜皮,然后在正面刻蚀出能够走电流的图形,背面要直接焊接在散热基板上,因此就不需要刻蚀了。
图片
DBC的主要功能需要保证硅芯片和散热基板之间的电气绝缘能力以及良好的导热能力,同时还要满足一定的电流传输能力。DBC基板类似2层PCB电路板,PCB中间的绝缘材料一般为FR4,而DBC常用的陶瓷绝缘材料为氧化铝(Al2O3)和氮化铝(AlN)
对于本文所分析的IGBT模块,内部有6个DBC,每个DBC上有4个IGBT芯片和2个Diode芯片,其中2个IGBT芯片和1个Diode芯片作为上管,剩下的作为下管,如图7所示。
图片
模块内部采用的IGBT芯片型号为:IGCT136T170,手册可以从英飞凌官网下载。图8 为IGBT芯片的平面俯视图和基本参数。IGBT的门极和发射极在芯片的上方(正面),集电极在下方(背面),芯片的厚度为200um。IGBT开通后,电流是从下至上流动的,因此也可以称这种结构的IGBT为纵向器件
图片
如果把这200um的芯片上再纵向来一刀,就可以得到如图9a所示的内部结构了,里面是由不同参杂的P型或N型半导体组合而成的。图8b为我们熟知的IGBT等效电路,通常都将IGBT理解为一个MOS控制的PNP晶体管。在刚开始入门电力电子的时候总感觉这个图有点别扭,为什么不把集电极画在上面,发射极画在下面,这样也符合我们逻辑啊!直到了解了IGBT电流是从下至上流动的,才恍然大悟,这可能也是最开始画这个图的人灵魂所在吧!
图片
让我们再稍微了解一下这颗IGBT芯片的电气参数,这个芯片在100℃下,可通过直流电流为117.5A。由图4可知,模块内部的单个IGBT器件一共包含12个IGBT芯片,因此总的电流为:117.5*12=1412A,与IGBT模块手册中的1400A额定电流基本一致。
为了保证IGBT芯片之间的均流效果,每个芯片栅极内部已经集成了11.5Ω的电阻。同时考虑到DBC之间的均流,每个DBC上的两个芯片外部又共用了一个门极电阻,如图10所示。用万用表测量了一下,阻值大概为4.13Ω,感兴趣的小伙伴可以结合图10算一下,看看是否与IGBT模块手册的中的1.6Ω一致。
图片

图11为Diode芯片的平面俯视图,正面为阳极,背面为阴极。二极管的电流方向是从上至下的,正好与IGBT的电流方向相反。Diode芯片额定电流为235A,每个IGBT由6个Diode并联组成,总电流可达1410A,与模块手册中的1400A也基本一致。Diode芯片的厚度与IGBT一样,也为200um。关于Diode芯片更详细的参数可以参考官方手册[2]。
图片
看到这里,你会不会惊叹在面积这么小,而且这么薄的半导体材料上就可实现上kV电压和上百A电流的开通和关断,真了不起,这也是为什么大功率半导体器件价格都很昂贵的原因。

IGBT芯片、Diode芯片以及DBC的上铜层互连一般采用键合线实现,常用的键合线有铝线和铜线两种,如图12所示。其中铝线键合工艺成熟、成本较低,但是铝线键合的电气、热力学性能较差,膨胀系数失配大,影响IGBT使用寿命。而铜线键合工艺具有电气、热力学性能优良等优点,可靠性高,适用于高功率密度、高效散热的模块。
图片

对IGBT模块内部结构有了基本了解后,让我们回过头来,把上面的所有部件互连起来,看看IGBT模块内部电流是怎么流动的。在这里我们以其中一个DBC中的上管IGBT为例说明电流的流向,红色代表上管IGBT(S1和S2)电流方向,蓝色代表二极管D1电流方向。图13b为图13a模块的左视剖面图及电流方向示意图,感兴趣的小伙伴可以画画下管IGBT的电流走向。
图片
图片

有些小伙伴可能好奇这个模块是怎么拆开的,其实也很简单,你只需要准备两把螺丝刀和一个小锤子就可了。
第1步需要一个梅花螺丝刀把IGBT模块底部的4个螺丝拧下来。
第2步将IGBT模块正面的所有端子采用平口螺丝刀撬开,这一步很关键,需要保证被撬开后的所有端子要与模块基板保持垂直。
第3步需要把IGBT固定在一个地方,或者找个人按住,用平口螺丝刀对准IGBT模块塑封外壳与基板连接处的任意一个位置,用锤子敲击螺丝刀,通过螺丝刀将外壳从基板撬开,撬开一个位置后,垫上东西,再去撬另外一个位置,就这样,慢慢地都撬开后,找个力气大的同学,用手直接扒开就可以了。
图片
由于我本身是做应用的,对器件本体设计及制造理解也不够深入,以上内容若有不对之处,请大家批评指正!

---------------------------------------------------------------------

IGBT 国内替代国外!

图片

什么是IGBT

所谓IGBT(绝缘栅双极型晶体管),是由 BJT(双极结型晶体三极管) 和 MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。

图片

简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。

图片

而平时我们在实际中使用的IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。

图片

国内IGBT企业崛起

IGBT是事关国家经济发展的基础性产品,如此重要的IGBT,长期以来我国却不得不面对依赖进口的尴尬局面,市场主要被英飞凌、三菱、富士电机为首的国际巨头垄断。自2005年开始,大量海外IGBT人才纷纷归国投入国产IGBT芯片和模块产业的发展,尤其是以美国国际整流器公司(IR)回国人员最多。
从IR归国主要从事芯片开发的专家有斯达半导汤艺博士、达新半导体陈智勇博士、陆芯科技张杰博士等,以上几家公司都已成为以自产IGBT芯片为主的产品公司。另外IR归国从事模块开发的专家还有银茂微电子庄伟东博士。中科院微电子所较早涉足IGBT行业,主要由无锡中科君芯承担IGBT研发工作,中科君芯的研发团队先后有微电子所、IR、日本电装、成电等技术团队的加入。
斯达半导作为国内IGBT行业的领军企业,成立于2005年,于2020年2月4日在上交所主板成功上市。公司自主研发设计的IGBT芯片和快恢复二极管芯片是公司的核心竞争力之一。据IHSMarkit报告数据显示,在2018年度IGBT模块供应商全球市场份额排名中,斯达半导排名第8位,在中国企业中排名第1位,成为世界排名前十中唯一一家中国企业。其中斯达半导自主研发的第二代芯片(国际第六代芯片FS-Trench)已实现量产,成功打破了国外企业常年对IGBT芯片的垄断。
成立于2013年的宁波达新,主要从事IGBT、MOSFET、FRD等功率半导体芯片与器件的设计、制造和销售。公司在8寸及6寸晶圆制造平台成功开发600V-3300V IGBT芯片产品,芯片电流等级涵盖10A~200A。采用自主IGBT芯片,达新推出了系列化的满足工业应用、消费电子、新能源的IGBT模块,模块电压涵盖600V~1700V,电流等级涵盖10A ~ 800A。
上海陆芯电子科技聚焦于功率半导体(IGBT、SJMOS & SiC)的设计和应用,包括芯片、单管和模块。具有以下优势:通过优化耐压终端环,实现IGBT高阻断电压,有效减少芯片面积,达到工业级和汽车级可靠性标准;通过控制少子寿命,优化饱和压降和开关速度;实现安全操作区(SOA)和短路电流安全操作区域SCSOA性能最优;改善IGBT有源区元胞设计可靠性,抑制IGBT的闩锁效应;调节背面减薄、注入、退火、背金等工艺;实现60um~180um晶圆厚度的大规模量产。
南京银茂微电子(SilverMicro)成立于2007年,专注于工业和其他应用的功率IGBT和MOSFET模块产品的设计和制造。通过采用现代化的设备来处理和表征高达3.3kV的电源模块,南京银茂微已经建立了先进的电源模块制造能力,还能够执行电源模块鉴定测试。产品已广泛用于工业逆变器,焊接机,UPS,电源和新能源应用。
江苏中科君芯科技有限公司是一家专注于IGBT、FRD等新型电力电子芯片研发的中外合资高科技企业,成立于2011年底。君芯科技是国内率先开发出沟槽栅场截止型(Trench FS)技术并真正实现量产的企业。公司推出的IGBT芯片、单管和模块产品从600V至6500V,覆盖了目前主要电压段及电流段,已批量应用于感应加热、逆变焊机、工业变频、新能源等领域。君芯科技独创的DCS技术将应用于最新的汽车级IGBT芯片中。
随着行业景气度逐渐好转和政策的推动,亦有不少新进入者抢夺市场。据集邦咨询分析,目前市场新入者主要有三类,一是向IGBT等高端产品扩展业务的功率半导体企业,如扬杰科技、华微电子等;二是出于为满足自身需求及出于供应链安全考虑向上游涉足的,如中车时代和比亚迪等;三是看好市场而进场的新公司,如瑞能半导体、广东芯聚能以及富能半导体等。
在IGBT方面扬杰科技于2018年3月控股了一条位于宜兴的6英寸晶圆线,目前该生产线已经量产IGBT芯片,主要应用于电磁炉等小家电领域。另外扬杰科技也在积极推进IGBT新模块产品的研发进程,50A/75A/100A-1200V半桥规格的IGBT开发成功。此外公司也积极规划8英寸线建设,储备8英寸线晶圆和IGBT技术人才。
老牌功率半导体器件厂商吉林华微电子于2019年4月,发布配股说明书,拟募投建设 8 英寸生产线项目。此次募投项目的主要产品技术先进,达到了英飞凌、ABB 等厂家的水平。华微电子于2001年上市,为国内功率半导体器件领域首家上市公司。目前已形成IGBT、MOSFET、SCR、SBD、IPM、FRD、BJT等为营销主线的系列产品,产品种类基本覆盖功率半导体器件全部范围。公司的IGBT薄片工艺、Trench工艺、寿命控制和终端设计技术等国内领先,达到国际同行业先进水平。
在IDM模式厂商中,中国中车和比亚迪分别依靠高铁和新能源汽车取得了一定的成绩。
株洲中车时代半导体有限公司(简称:中车时代半导体)作为中车时代电气股份有限公司下属全资子公司,全面负责公司半导体产业经营。从1964年开始投入功率半导体技术的研发与产业化,2008年战略并购英国丹尼克斯公司,目前已成为国际少数同时掌握大功率晶闸管、IGCT、IGBT及SiC器件及其组件技术的IDM(集成设计制造)模式企业代表,拥有芯片—模块—装置—系统完整产业链。
中车时代半导体拥有国内首条、全球第二条8英寸IGBT芯片线,全系列高可靠性IGBT产品已全面解决轨道交通核心器件受制于人的局面,基本解决了特高压输电工程关键器件国产化的问题,并正在解决我国新能源汽车核心器件自主化的问题。
比亚迪是在2005年进入IGBT产业,于2009年推出首款车规级IGBT 1.0技术,打破了国际厂商垄断,实现了我国在车用IGBT芯片技术上零的突破。2018年其推出的IGBT 4.0产品在电流输出、综合损耗及温度循环寿命等许多关键指标上超越了英飞凌等主流企业的产品,且产能已达5万片,并实现了对外供应。公司也是中国唯一一家拥有IGBT完整产业链的车企,包括IGBT芯片设计、晶圆制造、模块封装等部分,还有仿真测试以及整车测试。好消息是,据长沙晚报近日报道,长沙比亚迪IGBT项目日前已正式启动建设,计划建设集成电路制造生产线。
在IGBT新进玩家中,振华科技参股20%的成都森未科技有限公司是一家由清华大学和中国科学院博士团队创立的高科技企业,公司成立于2017年,主要从事IGBT等功率半导体芯片及产品的设计、开发、销售。森未科技IGBT芯片产品性能已可以对标英飞凌产品。公司主营产品电压等级为600V-1700V,单颗芯片电流规格5A-200A,覆盖工业控制、变频家电、电动汽车、风电伺服驱动、光伏逆变器等领域。
据了解,出身于恩智浦功率产品线的瑞能半导体,也有意进入IGBT的赛道。其实瑞能也非常有做IGBT的优势,首先,瑞能是所有重要白电制造商的供应商,对市场应用及客户需求有深刻的理解,产品未来会在性价比上有优势;再者,瑞能也是国内唯一家分销网络遍布全球的中国功率半导体公司;最后,瑞能有着50多年的功率器件技术积累,IGBT最讲究可靠性,依托瑞能南昌国家级可靠性及失效分析实验室,未来会形成在质量可靠性的竞争优势。
成立于2018年11月的广东芯聚能半导体,也看重了IGBT这个市场。芯聚能半导体于2019年9月20日在广州南沙举行了奠基仪式,项目总投资达25亿元。据了解,其项目第一阶段将建设用于新能源汽车的IGBT和SiC功率器件与模块生产基地,同时实现工业级功率器件规模化生产。第二阶段将面向新能源汽车和自动驾驶的汽车功率模块、半导体器件和系统产品,延伸并形成从芯片到封装、模块的产业链聚集。
除了上述提到的企业,国内的IGBT在芯片设计、晶圆制造、模块封装等整个产业链基本都已有布局。整体来看,中国IGBT产业链正逐步具备国产替代能力。
图片


国内IGBT与国外的差距

先说一下IGBT的全球发展状态,从市场竞争格局来看,美国功率器件处于世界领先地位,拥有一批具有全球影响力的厂商,例如 TI、Fairchild、NS、Linear、IR、Maxim、ADI、ONSemiconductor、AOS 和 Vishay 等厂商。欧洲拥有 Infineon、ST 和 NXP 三家全球半导体大厂,产品线齐全,无论是功率 IC 还是功率分离器件都具有领先实力。

日本功率器件厂商主要有 Toshiba、Renesas、NEC、Ricoh、Sanke、Seiko、Sanyo、Sharp、Fujitsu、Toshiba、Rohm、Matsushita、Fuji Electric 等等。日本厂商在分立功率器件方面做的较好,但在功率芯片方面,虽然厂商数量众多,但很多厂商的核心业务并非功率芯片,

从整体市场份额来看,日本厂商落后于美国厂商。近年来,中国台湾的功率芯片市场发展较快,拥有立锜、富鼎先进、茂达、安茂、致新和沛亨等一批厂商。台湾厂商主要偏重于 DC/DC 领域,主要产品包括线性稳压器、PWMIC(Pulse Width Modulation IC,脉宽调制集成电路)和功率MOSFET,从事前两种 IC 产品开发的公司居多。

总体来看,台湾功率厂商的发展较快,技术方面和国际领先厂商的差距进一步缩小,产品主要应用于计算机主板、显卡、数码产品和 LCD 等设备

而中国大陆功率半导体市场占世界市场的50%以上,但在中高端MOSFET及IGBT主流器件市场上,90%主要依赖进口,基本被国外欧美、日本企业垄断。

2015年国际IGBT市场规模约为48亿美元,预计到2020年市场规模可以达到80亿美元,年复合增长率约10%。

图片

2014年国内IGBT销售额是88.7亿元,约占全球市场的1∕3。预计2020年中国IGBT市场规模将超200亿元,年复合增长率约为15%。

图片

现在,国外企业如英飞凌、 ABB、三菱等厂商研发的IGBT器件产品规格涵盖电压600V-6500V,电流2A-3600A,已形成完善的IGBT产品系列,按照细分的不同,各大公司有以下特点:

(1)英飞凌、 三菱、 ABB在1700V以上电压等级的工业IGBT领域占绝对优势;在3300V以上电压等级的高压IGBT技术领域几乎处于垄断地位。 在大功率沟槽技术方面,英飞凌与三菱公司处于国际领先水平;

(2)西门康、仙童等在1700V及以下电压等级的消费IGBT领域处于优势地位。

国际市场供应链已基本成熟,但随着新能源等市场需求增长,市场链条正逐步演化。

图片

而在国内,尽管我国拥有最大的功率半导体市场,但是目前国内功率半导体产品的研发与国际大公司相比还存在很大差距,特别是IGBT等高端器件差距更加明显。核心技术均掌握在发达国家企业手中,IGBT技术集成度高的特点又导致了较高的市场集中度。跟国内厂商相比,英飞凌、 三菱和富士电机等国际厂商占有绝对的市场优势。形成这种局面的原因主要是:

(1)国际厂商起步早,研发投入大,形成了较高的专利壁垒。

(2)国外高端制造业水平比国内要高很多,一定程度上支撑了国际厂商的技术优势。

所以中国功率半导体产业的发展必须改变目前技术处于劣势的局面,特别是要在产业链上游层面取得突破,改变目前功率器件领域封装强于芯片的现状。

而技术差距从以下两个方面也有体现:

(1)高铁、智能电网、新能源与高压变频器等领域所采用的IGBT模块规格在6500V以上,技术壁垒较强;

(2)IGBT芯片设计制造、模块封装、失效分析、测试等IGBT产业核心技术仍掌握在发达国家企业手中。

我国发展IGBT面对的具体问题

(1)IGBT技术与工艺

 

我国的功率半导体技术包括芯片设计、制造和模块封装技术目前都还处于起步阶段。功率半导体芯片技术研究一般采取“设计+代工”模式,即由设计公司提出芯片设计方案,由国内的一些集成电路公司代工生产。

目前国内IGBT主要受制于晶圆生产的瓶颈,首先是没有专业的代工厂进行IGBT的代工,原8寸沟槽IGBT产品主要在华虹代工,但是IGBT并非华虹主营业务,产品配额极其匮乏,且价格偏高。但是随着中芯国际绍兴工厂和青岛芯恩半导体的晶圆厂的落成,相信这个局面会有很大改观。
其次,与国外厂商相比,国内公司在大尺寸晶圆生产商工艺仍落后于全球龙头,晶圆越大,单片晶圆产出的芯片就越多,在制造加工流程相同的条件下,单位芯片的制造成本会更低。目前,IGBT 产品最具竞争力的生产线是8英寸和12英寸,最为领先的厂商是英飞凌,国内晶圆生产企业此前绝大部分还停留在6英寸产品的阶段。目前国内实现8英寸产品量产的有比亚迪、株洲中车时代、上海先进、华虹宏力、士兰微,并且士兰微12寸晶圆产线预计2020年底量产。

由于这些集成电路公司大多没有独立的功率器件生产线,只能利用现有的集成电路生产工艺完成芯片加工,所以设计生产的基本是一些低压芯片。与普通IC芯片相比,大功率器件有许多特有的技术难题,如芯片的减薄工艺,背面工艺等。解决这些难题不仅需要成熟的工艺技术,更需要先进的工艺设备,这些都是我国功率半导体产业发展过程中急需解决的问题。

从80年代初到现在IGBT芯片体内结构设计有非穿通型(NPT)、穿通型(PT)和弱穿通型(LPT)等类型,在改善IGBT的开关性能和通态压降等性能上做了大量工作。但是把上述设计在工艺上实现却有相当大的难度。尤其是薄片工艺和背面工艺。工艺上正面的绝缘钝化,背面的减薄国内的做的都不是很好。

薄片工艺,特定耐压指标的IGBT器件,芯片厚度也是特定的,需要减薄到200-100um,甚至到80um,现在国内可以将晶圆减薄到175um,再低就没有能力了。比如在100~200um的量级,当硅片磨薄到如此地步后,后续的加工处理就比较困难了,特别是对于8寸以上的大硅片,极易破碎,难度更大。

背面工艺,包括了背面离子注入,退火激活,背面金属化等工艺步骤,由于正面金属的熔点的限制,这些背面工艺必须在低温下进行(不超过450°C),退火激活这一步难度极大。背面注入以及退火,此工艺并不像想象的那么简单。国外某些公司可代加工,但是他们一旦与客户签订协议,就不再给中国客户代提供加工服务。

在模块封装技术方面,国内基本掌握了传统的焊接式封装技术,其中中低压模块封装厂家较多,高压模块封装主要集中在南车与北车两家公司。与国外公司相比,技术上的差距依然存在。国外公司基于传统封装技术相继研发出多种先进封装技术,能够大幅提高模块的功率密度、散热性能与长期可靠性,并初步实现了商业应用。

高端工艺开发人员非常缺乏,现有研发人员的设计水平有待提高。目前国内没有系统掌握IGBT制造工艺的人才。从国外先进功率器件公司引进是捷径。但单单引进一个人很难掌握IGBT制造的全流程,而要引进一个团队难度太大。国外IGBT制造中许多技术是有专利保护。目前如果要从国外购买IGBT设计和制造技术,还牵涉到好多专利方面的东西。

 

(2)IGBT工艺生产设备

 

国内IGBT工艺设备购买、配套十分困难。每道制作工艺都有专用设备配套。其中有的国内没有,或技术水平达不到。如:德国的真空焊接机,能把芯片焊接空洞率控制在低于1%,而国产设备空洞率高达20%到50%。外国设备未必会卖给中国,例如薄片加工设备。

又如:日本产的表面喷砂设备,日本政府不准出口。好的进口设备价格十分昂贵,便宜设备又不适用。例如:自动化测试设备是必不可少的,但价贵。如用手工测试代替,就会增加人为因素,测试数据误差大。IGBT生产过程对环境要求十分苛刻。要求高标准的空气净化系统,世界一流的高纯水处理系统。

要成功设计、制造IGBT必须有集产品设计、芯片制造、封装测试、可靠性试验、系统应用等成套技术的研究、开发及产品制造于一体的自动化、专业化和规模化程度领先的大功率IGBT产业化基地。投资额往往需高达数十亿元人民币。

由于 IGBT 行业存在技术门槛较高、人才匮乏、市场开拓难度大、资金投入较大等困难,国内企业在产业化的进程中一直进展缓慢,随着全球制造业向中国的转移,我国功率半导体市场占世界市场的 50%以上,是全球最大的 IGBT 市场,但 IGBT 产品严重依赖进口,在中高端领域更是 90%以上的 IGBT 器件依赖进口,IGBT 国产化需求已是刻不容缓。
-------------------------------------------------------------------------------------------

一文看懂IGBT

来源:内容来自「中投证券」,谢谢。 

IGBT(绝缘栅双极型晶体管),是由 BJT(双极结型晶体三极管) 和 MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。

图片

IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。

图片

IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU” 。采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术。

图片

IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。

图片

在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。

1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。

2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。

3)当集-射极电压UCE>0时,分两种情况:

②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。

②若栅-射极电压UGE>Uth ,栅极沟道形成,IGBT呈导通状态(正常工作)。此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降低。

图片

回顾功率器件过去几十年的发展,1950-60年代双极型器件SCR,GTR,GTO,该时段的产品通态电阻很小;电流控制,控制电路复杂且功耗大;1970年代单极型器件VD-MOSFET。但随着终端应用的需求,需要一种新功率器件能同时满足:驱动电路简单,以降低成本与开关功耗、通态压降较低,以减小器件自身的功耗。1980年代初,试图把MOS与BJT技术集成起来的研究,导致了IGBT的发明。 

1985年前后美国GE成功试制工业样品(可惜后来放弃)。自此以后, IGBT主要经历了6代技术及工艺改进。

图片

从结构上讲,IGBT主要有三个发展方向:

1)IGBT纵向结构:非透明集电区NPT型、带缓冲层的PT型、透明集电区NPT型和FS电场截止型;

2)IGBT栅极结构:平面栅机构、Trench沟槽型结构;

3)硅片加工工艺:外延生长技术、区熔硅单晶;

图片

其发展趋势是:①降低损耗 ②降低生产成本

总功耗= 通态损耗 (与饱和电压 VCEsat有关)+开关损耗 (Eoff Eon)。同一代技术中通态损耗与开关损耗两者相互矛盾,互为消长。

图片

IGBT模块按封装工艺来看主要可分为焊接式与压接式两类。高压IGBT模块一般以标准焊接式封装为主,中低压IGBT模块则出现了很多新技术,如烧结取代焊接,压力接触取代引线键合的压接式封装工艺。

随着IGBT芯片技术的不断发展,芯片的最高工作结温与功率密度不断提高, IGBT模块技术也要与之相适应。未来IGBT模块技术将围绕 芯片背面焊接固定 与 正面电极互连 两方面改进。模块技术发展趋势:

  • 无焊接、 无引线键合及无衬板/基板封装技术;

  • 内部集成温度传感器、电流传感器及驱动电路等功能元件,不断提高IGBT模块的功率密度、集成度及智能度。

图片

作为新型功率半导体器件的主流器件,IGBT已广泛应用于工业、 4C(通信、计算机、消费电子、汽车电子)、航空航天、国防军工等传统产业领域,以及轨道交通、新能源、智能电网、新能源汽车等战略性新兴产业领域。

图片

1)新能源汽车

IGBT模块在电动汽车中发挥着至关重要的作用,是电动汽车及充电桩等设备的核心技术部件。IGBT模块占电动汽车成本将近10%,占充电桩成本约20%。IGBT主要应用于电动汽车领域中以下几个方面:

A)电动控制系统 大功率直流/交流(DC/AC)逆变后驱动汽车电机;

B)车载空调控制系统 小功率直流/交流(DC/AC)逆变,使用电流较小的IGBT和FRD;

C)充电桩 智能充电桩中IGBT模块被作为开关元件使用;

图片

2)智能电网

IGBT广泛应用于智能电网的发电端、输电端、变电端及用电端:

  • 从发电端来看,风力发电、光伏发电中的整流器和逆变器都需要使用IGBT模块。

  • 从输电端来看,特高压直流输电中FACTS柔性输电技术需要大量使用IGBT等功率器件。

  • 从变电端来看,IGBT是电力电子变压器(PET)的关键器件。

  • 从用电端来看,家用白电、 微波炉、 LED照明驱动等都对IGBT有大量的需求。

图片

3)轨道交通

IGBT器件已成为轨道交通车辆牵引变流器和各种辅助变流器的主流电力电子器件。交流传动技术是现代轨道交通的核心技术之一,在交流传动系统中牵引变流器是关键部件,而IGBT又是牵引变流器最核心的器件之一。

图片

2015年国际IGBT市场规模约为48亿美元,预计到2020年市场规模可以达到80亿美元,年复合增长率约10%。2014年国内IGBT销售额是88.7亿元,约占全球市场的1∕3。预计2020年中国IGBT市场规模将超200亿元,年复合增长率约为15%。

从公司来看,国外研发IGBT器件的公司主要有英飞凌、 ABB、三菱、西门康、东芝、富士等。中国功率半导体市场占世界市场的50%以上,但在中高端MOSFET及IGBT主流器件市场上,90%主要依赖进口,基本被国外欧美、日本企业垄断。

图片

国外企业如英飞凌、 ABB、三菱等厂商研发的IGBT器件产品规格涵盖电压600V-6500V,电流2A-3600A,已形成完善的IGBT产品系列。

英飞凌、 三菱、 ABB在1700V以上电压等级的工业IGBT领域占绝对优势;在3300V以上电压等级的高压IGBT技术领域几乎处于垄断地位。 在大功率沟槽技术方面,英飞凌与三菱公司处于国际领先水平。

西门康、仙童等在1700V及以下电压等级的消费IGBT领域处于优势地位。

图片

尽管我国拥有最大的功率半导体市场,但是目前国内功率半导体产品的研发与国际大公司相比还存在很大差距,特别是IGBT等高端器件差距更加明显。核心技术均掌握在发达国家企业手中,IGBT技术集成度高的特点又导致了较高的市场集中度。 跟国内厂商相比,英飞凌、 三菱和富士电机等国际厂商占有绝对的市场优势。形成这种局面的原因主要是:

  • 国际厂商起步早,研发投入大,形成了较高的专利壁垒。

  • 国外高端制造业水平比国内要高很多,一定程度上支撑了国际厂商的技术优势。

图片

中国功率半导体产业的发展必须改变目前技术处于劣势的局面,特别是要在产业链上游层面取得突破,改变目前功率器件领域封装强于芯片的现状。

总的来说,在技术差距方面有:高铁、智能电网、新能源与高压变频器等领域所采用的IGBT模块规格在6500V以上,技术壁垒较强;IGBT芯片设计制造、模块封装、失效分析、测试等IGBT产业核心技术仍掌握在发达国家企业手中。

图片

近几年中国IGBT产业在国家政策推动及市场牵引下得到迅速发展,已形成了IDM模式和代工模式的IGBT完整产业链,IGBT国产化的进程加快,有望摆脱进口依赖。

图片

受益于新能源汽车、轨道交通、智能电网等各种利好措施,IGBT市场将引来爆发点。希望国产IGBT企业能从中崛起。

 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:港口技术安全网 » 浅析IGBT:IGBT的结构与工作原理

分享到: 更多 (0)
avatar
切换注册

登录

忘记密码 ?

您也可以使用第三方帐号快捷登录

切换登录

注册

我们将发送一封验证邮件至你的邮箱, 请正确填写以完成账号注册和激活